
This is a preprint of a paper intended for publication in a journal or proceedings. Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the
author.

Law
re

nce

Liver
m

ore

Nati
onal

Lab
ora

to
ry

UCRL-JC-121027
PREPRINT

Report of the Hacker Attack Working Group
August 1994

This paper was prepared for submittal to the
1995 DOE Computer Security Group Training Conference

Milwaukee, WI
May 1-4, 1995

February 1995

Frank Swift

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

1

Report of the Hacker Attack Working Group

August 1994

Members of the Working Group: Richard Feingold, Dave Grubb (Chair), Larry Little,
Paul Mauvais, Dave Osterman, Joe Ramus, John Reynolds, Jim Sharp, Larry Snyder,
Frank Swift.

The Hacker Attack Working Group was formed to study and recommend specific ways to
protect LLNL computers and their assets from attacks from the Internet. The nominal
timeline for the study and making this report was four weeks from the date the task was
assigned. Accordingly, the group conducted a series of meetings to scope out the
problem and possible solutions (see Appendix A). The group performed these functions
and reached consensus on a series of recommended solutions. These solutions are listed
and described in the body of this report.

The problem we addressed: Hacker attacks from the Internet against computers
running UNIX operating systems at LLNL.

Attacks from the Internet - Due to security holes in the operating system(s), the fact that
we are using networks (Ethernet) that are the equivalent of telephone party lines where it
is easy to listen in, and less than complete system administration, many of the computers
attached to Open LabNet are vulnerable to attacks from hackers on the Internet. Our
primary concern is with computers running the UNIX operating system. Experience has
shown that these machines are the most frequently attacked and, not surprisingly, the
most vulnerable to attack. Many of the Lab's Macintosh computers are attached to Open
LabNet and are, therefore, at risk. However, today, there are far fewer ways to attack a
Macintosh from the Internet. In general, a Macintosh user has to be running a particular
piece of software and have it configured in a particular way before his/her Macintosh is
vulnerable to Internet attack (see Appendix B). In contrast, due to the security holes in
many of the varieties of the UNIX operating system, all a user has to do is have their
computer turned on and connected to Open LabNet for it to be vulnerable. For
completeness, we note that there are many other computers at the Lab running other
operating systems such as VMS. Many of the recommendations we make in this report
are applicable and have value to protecting these computers, too.

We also note that our focus was clearly on attacks from outside the Lab. There are also
potentially attackers (employees, contractors, etc.) inside the Lab. At this time, we
believe the risk from the "insider" threat is much less than the threat from external
attacks. Again, though, many of the same actions we recommend to protect against
outsider attack will also work against insider attacks.

As part of our process, we discussed a number of different ways of protecting computer
systems and the pluses and minuses of each. A summary of these discussions is
presented in Appendix C.

We based our recommendations on providing greater and greater degrees of protection to
the computer and the data on it.

2

Recommended Protection
Level

Types of computer/data protected

1 All computers (UNIX)

2 Sensitive data such as evaluations and rankings

3 Sensitive data such as Official Use Only, In Strict

Confidence and CRADA protected data

4 Sensitive data that the owner wants to protect from

snooping as it transverses the net

5 Sensitive data such as UCNI data

6 Data determined by the data owner to be highly sensitive

or mission critical

The mapping between Protection Level and type of data protected is only a starting point
for determining how much effort, resources, and technology to apply to protecting your
data. The relevant DOE Order (1360.2B) and good business practice requires that anyone
with sensitive data perform a risk analysis to determine the threats, consequences of data
compromise/loss, and resources that they have to apply to protecting their data. One
organization may have sensitive data such as Official Use Only or In Strict Confidence,
but lack the resources to protect the data at Level 3. This organization may choose to
protect the data only at Level 1. Another organization may have data that they must
protect according to the terms and conditions of their CRADA. This organization may
decide that the consequences of loss or compromise of their CRADA data is so severe
that they choose to protect the data at Level 5. In both of these cases, the risk analysis
and the thought process that goes into making these decisions should be documented.
These decisions should also be reviewed and reassessed on a recurring basis.

The protection levels are summarized below and described in detail in a following
section. In each case, we first detail the goal of each protection level (e.g. stopping
hackers from exploiting known holes in the UNIX operating system); we then make
specific recommendations including specific actions that can be taken to achieve these
goals. You may choose to achieve the same goal by using different technologies or
administrative controls - the key is to achieve a given level of security.

Six levels of (increasing) protection for data on machines connected to
Open LabNet - Summary

Level 1 (essentials) - All systems should do:

Goals -
a. Configure and maintain the system giving rights and privileges to only

those users and processes which should have them and giving them no more
rights or privileges than they need.

b. Be able to recover stolen or destroyed data
c. Plug the known holes in the operating system.
d. Do not allow hackers to grab the root password as it transports across the net

3

e. Limit access to your computer to only those machines that should reasonably
have access

f. Have the computer under the guidance of someone knowledgeable in
computer security

g. Make sure the computer's users are aware of computer security issues

Recommended actions:
a. System under good/defensive system administration1

b. Data is backed up to an off-line media (e.g. tape) on a regular basis
c. System is running an up-to-date OS with all security patches2

d. Use one time passwords (S/key or a smart card) for root account - Also
recommended for VMS systems.

e. Use TCP Wrapper (available on dcsp.llnl.gov)
f. System security is monitored and guided by a trained CSSO
g. Users trained on computer security relevant to their machine(s) and the sensitivity

level of the data on them

Level 2:

Goals -
a. Provide Level 1 protection plus
b. Prevent hackers from grabbing user passwords as they transport across the

net

Recommended actions -
a. Take all Level 1 actions plus
b. Use one time passwords (S/Key or "Smart Card") for all users - Also

recommended for VMS systems.

1A good reference book for the security aspects of UNIX system administration is Practical UNIX Security,
Simson Garfinkel and Gene Spafford, O'Reily 7 Associates, Inc., 1993

2 Guaranteed clean and patched OSs to be distributed on CD ROM (inc. encrypted check sums) for major
Lab OSs.

4

Level 3:

Goals:
a. Provide Level 2 protection plus
b. Stop hackers from looking at sensitive data files on disk

Recommended actions -
a. Take all Level 2 actions plus
b. Encrypt all sensitive data files on disk3 - this is the user's responsibility

Level 4:

Goals -
a. Provide Level 3 protection plus
b. Prevent hackers from snooping information as it transports across the net

Recommended actions -
a. Take all Level 3 actions plus
b. Encrypt all data that goes out onto a network - this is the user's responsibility4

Level 5:

Goals -
a. Provide Level 4 protection plus
b. Deny access to the (sub) network supporting the computer(s) with sensitive

data

Recommended actions -
a. Take all Level 4 actions plus
b. Isolate machine from Open LabNet with a Firewall and monitor the Firewall

computer.

Level 6:

Goal -
a. Guarantee that outside attackers can not access the sensitive data

Recommended actions -
a. Disconnect from Open LabNet

3 Requires a technical working group to recommend products to provide the needed security.

4 Also requires a working group to identify recommended products/solutions

5

Descriptions of Recommended Actions:

Level 1 (essentials) - all systems should do:

-- System under good system administration - defensive system administration5

The basis of protection from external attacks is good system administration. In this
statement we include

-- configuring the system so all files are controlled by users and groups and
limiting the number of files and services which are world readable and world
write-able
-- having a user tracking system that keeps track of who the users are on the
system, why they have accounts (including who authorized the account) and
checking all accounts at least once a year to make sure the user still needs the
account and is authorized to have it
-- limiting the number of people with root access to the bare minimum level and
having individual root accounts
-- limiting the number of setuid and setgid programs and making them non-root
setuid if possible
-- making sure everyone has a good (not easily guessed or broken) password
-- turning off all unneeded services (e.g. tftp) or limiting access to these utilities
(see TCP Wrapper below)
-- not putting Internet wide services such as gopher, WWW, or anonymous ftp
on a machine that stores or processes sensitive data
-- making sure the machine is registered with the Open LabNet registrar
(registrar@llnl.gov) including the name of the system administrator, the local
network administrator, and the responsible manager or the machine owner
-- backup the system and files regularly and test the backups every so often to
make sure you really could recover your data if necessary
-- checking regularly for known vulnerabilities including checking regularly to
see if the Ethernet interface has been put in promiscuous mode
-- keeping the operating system patched and up to date (see below.)

We also encourage system administrators to regularly run programs such as Tripwire
and COPS or SPI (Garfinkel and Spafford, op. cit.).

Cost: Providing these functions is part of good system administration. The costs
incurred are those for training system administrators and for ranking and rewarding
the ones who do this difficult job well. There will also be recurring costs associated
with requiring system administration on individual user machines if these machines
are not already under the care of a systems administrator. Individual users can
provide the function of security administration if they have the training, knowledge,
and tools to do the administration. The important point is that someone must
perform this function. A single poorly or non-administered machine on the net
makes all its neighbors more vulnerable to attack.

-- System is running an up-to-date OS with all security patches6

5A good reference book for the security aspects of UNIX system administration is Practical UNIX Security,
Simson Garfinkel and Gene Spafford, O'Reily & Associates, Inc., 1993

6 Guaranteed clean and patched OSs to be distributed on CD ROM (inc. encrypted check sums) for major
Lab OSs.

6

We have found from hard experience that the makers of operating systems tend to
put the most effort into providing security fixes for the most recent versions of their
operating system (the one they want you to buy). This is the basis for our
recommendation that systems run up-to-date versions of the operating system.

However, it is often difficult to know which version of the operating system (OS) is
in the best shape from a security point of view and which system patches work with
which version of the OS. Accordingly, we recommend that we create for internal (to
LLNL) distribution Compact Disks (CDs) with pre-configured and patched versions
of the most common operating systems used at LLNL. It would be the task of the
OCSSOs working with their CSSOs and system administrators to determine which
operating systems will be supported on a Lab-wide basis and how the operating
system would be configured on the CDs.

System administrators and knowledgeable users could then install the operating
system provided on the CDs and know that they have a system which is clean and as
secure as possible.

In addition, we are recommending that the we also maintain an LLNL patch server
which will include tested and clean versions of recent patches and installation scripts
for installing those patches. Again, only the most common (at LLNL) versions of
UNIX will be supported.

Cost:
One time costs: -- Hardware and software to write CDs: $10k.
Reoccurring costs -- Staff to configure and maintain the operating system for

distribution including adding patches as necessary and
writing the CDs: 1/2 - 1 FTE per supported version of UNIX
-- CDs: $25 per CD
-- Put computers on maintenance so they can legally have
access to operating system updates: $??

7

-- Use one time passwords (S/key or "Smart Card") for root account
The most recent hacker attacks have proven that having a "good" password is no
longer sufficient protection from hacker attacks. A hacker who breaks into a
computer on the network and can control the Ethernet interface on that computer can
"grab" all passwords as they transport across the net during login. For this reason,
we are recommending that all UNIX computers use a "one-time" password
mechanism for the root password(s). A one-time password is a password that is only
used once. Unlike traditional passwords where the same password is used every
time a user logs in into a system, one-time passwords are used once and the same
password is never used again. There are two principle ways of generating the one-
time password: the first relies on time synchronization between the computer and an
electronic card carried by the user. Both the computer and the card calculate what
the user's password should be at a given point in time. The user types in the
password displayed on the card and sends it to the computer. The computer matches
the password the user sent against the one it calculated and if they match it grants the
user access to the system. The second method is based on a challenge and a
response. As the user logs in, the computer sends the user a series of characters. The
user inputs these characters into a local computing device (electronic card, PC,
portable computer, etc.) and calculates a response which the user then enters and
sends back to the originating computer. If what the user sends back matches the
password the originating computer expected, then the user is given access to the
system.

Our working group looked at both public domain products and commercially
available and supported products. For groups with sufficient resources ($$) we
recommend buying the "Smart Card" software and gold cards7. Costs are discussed
below. For groups who want to do something immediately or can not afford the
"Smart Card" solution, we recommend using the public domain software S/Key.
Our view of the pluses and minuses of these two solutions are provided in
Appendix E.

One Smart card can operate in either time synchronous mode or challenge/response
mode. It also supports up to nine administrative domains with one card so it would
be possible for a user to have accounts in up to nine different administrative domains
(i.e. a system of computers under one management/administrative structure) using
only one card.

S/Key is a software-only solution that works on a challenge/response basis. The
S/Key software is available via anonymous ftp from the DCSP server (dcsp.llnl.gov.)
Included with the software are software packages for Macs and DOS machines
which calculate the response to the host machine's challenge. If you are going to be
on travel or somewhere where you do not have access to a local computing capability
(such as a PowerBook), you can print out a list of valid responses a head of time that
you can then enter from a dumb terminal.

Costs: "Smart Card" - A site license for all UNIX machines at LLNL for the
"Smart Card" server software costs $180k. We estimate that it will require

7Enigma logic is working on a software only solution that eliminates the need for the electronic card. This
solution is available today (6/94) for the IBM PC and is promised for Sun workstations and Macintoshes by
the end of the summer. They will port the software solution to other platforms if there is sufficient market
demand.

8

approximately 5% of a system administrator's time to administer the one-time
password service after it is installed and configured and user accounts are setup.
Each user also needs an "Smart Card" Gold card which will cost between $40 - $50
depending on how many cards we buy. Because the batteries in the "Smart Card"
card can not be replaced, there is a recurring cost associated with replacing the cards
(at another $40 - $50 per user) every three to five years. This is one of the reasons
we are interested in a smart card's software only solution which does not require a
smart card. We anticipate programming the seeds into the cards ourselves. The
hardware costs for the programming device is about $2k. We anticipate that this
activity will be performed at one or more of LLNL's major computer centers and that
the incremental man-power requirement for this activity will be small.

S/Key - The S/Key software is freely available. We estimate that the incremental
cost to maintain the software will be approximately 5% of a system administrator's
time. See Appendix F for additional information on S/Key.

-- Use TCP Wrapper (available on dcsp.llnl.gov)
TCP Wrapper is software that is freely available for UNIX systems. It has been
referred to as a "poor man's Firewall". TCP wrappers allows the system
administrator to selectively reject requests for services such as tftp, exec, ftp, rsh,
telnet, rlogin, finger, and others. As an example, it is possible to setup TCP
Wrappers on a computer such that, that computer will not accept any tftp (trivial file
transfer protocol) requests from outside the domain llnl.gov. As a second example, it
is possible to setup TCP Wrappers so that it will not accept any requests for services
from a particular host such as a host that has been repeatedly used to attack the Lab
in the past.

A five year NASA study showed that a large majority of their attacks came from
foreign and educational sites. See Appendix D for more information on TCP
Wrapper.

Cost: The TCP Wrapper software is freely available on the DCSP server
(dcsp.llnl.gov). There will be some small, incremental cost in system administration
to setup and administer TCP Wrapper on a given system, but we have in-house
experience with the software and any on-site systems administrator can get help in
setting it up.

-- System security is monitored and guided by a trained CSSO
All systems connected to the Internet should be under the purview of a trained
Computer Systems Security Officer (CSSO).

Costs: May require some organizations to assign additional personnel as CSSOs.

-- Users and managers trained on computer security relevant to their machine(s)
and the sensitivity level of the data on them

One of the keys to improving LLNL security against Internet attack is to alert users
and managers to the fact that their computers are attached to the Internet and can be
attacked. They then need some simple guidelines (akin to the 13 commandments)
that they can follow to improve their security.

9

We recommend providing them with this information via a booklet that alerts them
to the dangers of attack from the Internet and gives them a few, simple steps they can
take (such as these recommendations) to protect their date. The booklet would be
briefed to the 400 before it is sent out. It would be kept up to data and available on-
line. It would also be given out as part of the new employee orientation, as part of
the CRADA Principle Investigator's Handbook, and a synopsis would be included in
the yearly SAFE security reminder that is sent to all employees yearly.

Cost: It is the joint responsibility of the CS organization and the OCSSOs to
develop the information in the booklet. We recommend a focused working group to
develop the material for the booklet. We estimate a printing cost (including TID
editor support) of $12k. The yearly update (recurring) costs should be comparable
($12k/yr.).

Level 2:

-- Level 1 + one time passwords (S/Key or "Smart Card") for all users

We recommend that everyone who possibly can, setup their systems with Level 2
security. We have found from experience that once a hacker can break into any user's
account, it is probable that the hacker can then gain access to root.

Cost: The incremental cost above that of providing one time passwords for the root
account (Level 1), is the cost of the additional smart cards at the rate of $40 - $50 per user
(assuming a large order of Smart Cards.) Because the batteries in the "Smart Card" card
cannot be replaced, there is a recurring cost associated with replacing the cards (at
another $40 - $50 per user) every three to five years. This is one of the reasons we are
interested in "Smart Card" 's software only solution which does not require a smart card.
We anticipate programming the seeds into the cards ourselves. We also anticipate that the
activity of programming the cards and distributing them will be performed by one or
more of LLNL's major computer centers and can be readily absorbed into their existing
staff requirements (i.e. no new FTEs required.)

Level 3:

-- Level 2 + encrypt all sensitive data files on disk - this is the user's responsibility

Encrypting data on a disk is a cost effective way to protect it from both internal (to
LLNL) and external (Internet) attacks. The key drawbacks to encrypting data that is
stored on disk are:

a. it takes time to encrypt the data on the disk when it is stored and it takes time to
decrypt it every time you want to use it.

b. users sometimes forget their encryption key. When this happens the data is lost
unless the particular software package allows what is called an administrator's
key. This is an encryption key that an administrator can use to decrypt the data
even if the user forgets his/her key. We will need a working group to look for
products that provide the administrator's key functionality.

Level 1 and Level 2 protections can be implemented by system administrators. Level 3
and Level 4 protection are the user's responsibility. System administrators can install the

10

necessary software/hardware, but it is the user's responsibility to decide which files need
to be protected by encryption.

Cost: The most flexible solution for encryption is to do it in software; the fastest way to
do it is in hardware. As noted in the list of levels of protection, we need to have a
technical working group look at products that are available and make recommendations.
We expect the software will cost between $50 - $200 per user/seat. There will be some
small added system administration cost associated with accessing files after users forget
their encryption key.

Level 4:

-- Level 3 + encrypt all data that goes out onto a network - this is the user's
responsibility

The most recent hacker attacks have shown that hackers are capable of breaking into
machines at LLNL and "listening" to the data that goes over sections of Open LabNet.
They do this by breaking into a computer and putting the Ethernet card on that computer
into what is known as promiscuous mode. Normally, an Ethernet card only picks up the
data that is addressed to it. In promiscuous mode, the Ethernet card picks up all the data
on the network it is on. In this way hackers can collect all the data (email, QuickMail,
file transfer, interactive sessions with remote computers (telnet, SQL access, ...) etc.) on
the section of the network where the compromised computer resides.

The best way to protect the data on the network is to encrypt it before it goes out onto the
net. Historically we have not done this for a number of reasons including:

1. we had not been compromised in this way before
2. encryption slows down the process of sending data over the net
3. it was hard to distribute the encryption keys.

Number 1 has changed; we have been attacked in a manner which allows the hacker to
monitor anything we put out on the net. Number 2 will probably always be true. No
matter how fast the hardware and software is at encrypting data, it will always be slower
than not encrypting it. The question becomes one of which is worse - the loss of speed or
the potential loss of the data. Number 3 is still true, but that will be changing (see
below).

Level 1 and Level 2 protections can be implemented by system administrators. Level 3
and Level 4 protection are the user's responsibility. System administrators can install the
necessary software/hardware, but it is the user's responsibility to decide which files need
to be protected by encryption.

Key distribution is important if person A wants to send encrypted data to person B.
Person A has to send person B the encryption key so person B can decrypt the data. The
problem has always been how to send person B the encryption key without letting the
hacker grab the key as it moved across the net. The generally accepted solution is to have
sets of public keys (which are known to everyone) and private keys (which are only
known to their owner). The public key/private key method of sending encrypted data is
very powerful but it comes at an expense. It requires an infrastructure that hands out the
keys to authenticated users and then maintains a database of the keys.

For a Lab wide solution, the other major issues are

11

1.) using a public key/private key method that runs on all our major computer
platforms: Macintosh, IBM PC, and UNIX

2.) using a public key/private key method that is acceptable to DOE.

At the present time, we do not have a Lab-wide solution for key distribution. AIS is
setting up the ability to generate and distribute public key/private key pairs for Apple's
AOCE environment which is part of the Macintosh operating system 7.1.1
(System 7 Pro). It is unclear whether the keys generated for AOCE could be used on
UNIX or PC systems.

The presently most popular public key / private key encryption software for UNIX
workstations and PCs is Privacy Enhanced Mail (PEM). Both AOCE and PEM are based
on RSA encryption and, therefore, may have the ability to interoperate. Testing will be
required to determine whether or not PEM can use keys generated for AOCE and whether
or not PEM and AOCE can interoperate.

We recommend that a working group be chartered to look at these issues and make
recommendations on creating a Lab-wide solution for creating and distributing public and
private encryption keys.

Cost: If we can use the AOCE technology, we anticipate that it will take roughly one
FTE to generate and assign the public and private keys and to maintain the key database.
LLNL already has a site license of the AOCE client software (part of System 7.1 Pro).
The Macintosh AOCE server software costs about $1000 per server. We estimate that we
would need roughly as many AOCE servers as we now have QuickMail servers - roughly
50 to 100 servers ($50k -$100k). We anticipate a requirement for 1 man-month of effort
to test the AOCE/PEM interoperability. If those test are successful, we could use the
PEM software which is freely available for IBM PCs and UNIX workstations.

12

Level 5:

-- Level 4 + isolate machine from Open LabNet with a Firewall and monitor the
Firewall computer.

A Firewall8 can be an effective deterrent to attacks from the Internet because it restricts
who and what kind of network traffic can pass through the Firewall. This working group
believes that, if used at all, Firewalls are best applied at the local level (as opposed to the
Lab wide level.) The reason is that Firewalls, in addition to restricting who and what can
get into your network, also restrict what the valid users of your network can do.
Imposing Firewalls at LLNL's connection points to the Internet would place unnecessary
restrictions on Internet access by all LLNL users. This working group does not believe
that the threat from Internet attack is so great that it warrants this action. Indeed, this
working group has serious concerns about using Firewalls in any situation:

-- having a Firewall tends to give people a false sense of security
-- setting up Firewalls around the Lab will tend to isolate the groups with the

Firewalls from the rest of the Lab
-- our experience at LLNL has shown that the restrictions placed on users by

Firewalls is great enough that the users demand that holes be put in the
Firewall to permit key services the users want. The net result is diminished
protection from the Firewall.

If a Firewall is needed, we recommend that management consider monitoring the activity
on the Firewall. One of the advantages of Firewalls is that they focus attacks on the
system to a single point - the Firewall. Added protection can then be added by
monitoring the activity on the Firewall for attacks. Network intrusion detection software
was developed at LLNL is available for this purpose. Contact Bob Palasek at 422-8527
for more information and a copy of the software.

Cost: Firewalls require both a one-time cost for the computer that functions as the
Firewall and a recurring cost of system administration of the Firewall. The system
administration costs can very markedly depending upon how many users you are trying to
support behind the Firewall and the amount of Internet access you are providing to these
users. The least expensive systems are ones where only selected, key resources are
protected behind the Firewall. In addition, if the Firewall is monitored, there is a
recurring cost to have someone look at and analyze the data that is produced by the
monitor.

LLNL has the expertise in-house to setup Firewalls which will provide significantly
enhanced protection against Internet attack. We encourage managers to consider
employing Firewalls to protect mission critical and highly sensitive systems. Contact the
Distributed Computing Support Program (DCSP) for assistance in evaluating and setting
up Firewalls.

8Firewalls and Internet Security - Repelling the Wily Hacker, William R. Cheswick and Steven M.
Bellovin, Addison-Wesley, 1994

13

Level 6:

-- Disconnect from Open LabNet

At a certain point, protection of the data becomes more important than being connected to
Open LabNet and the Internet. This is a management decision.

Cost: It has a relatively high cost because it requires not only that you have a computer
which is isolated from Open LabNet, but also that the computers which are networked to
it are also isolated from Open LabNet.

What Next:

Establishing and maintaining adequate protections from Internet attack is a continuing
process. Internet technology is changing rapidly and so are the threats. As part of this
study we asked the question - "What will be the next new attack from the Internet ?" .
The answers we received fell into three categories:

1. Trojan horses in your Mosaic (and other) applications - Today we take it for granted
that when Mosaic launches an application on your machine (such as JPEGviewer) that the
application does what we believe it does and nothing more. This is naive at best. We
anticipate that we will soon have free and shareware utilities out on the Internet for
Mosaic and other applications which will have Trojan horses in them that will steal your
password, over write your files, and cause other forms of problems. We will soon need a
way to test the applications we get from the Internet for such Trojan horses and to
distribute "clean" versions of these programs locally.

2. User identity spoofing - It is already possible to spoof Internet email systems into
delivering mail from user 1 at host A and making it look like it came from user 2 at host
B. We anticipate that this sort of spoofing will increase. Fortunately encryption
technology similar to what we need for encrypting the data we share over the net will also
address this problem by providing us with "digital signatures". This is another reason to
move ahead on investigating public key/private key encryption.

3. Attacks on routers and domain name servers - Today most routers are vulnerable to
many of the same kinds of attacks that UNIX workstations are. The Open LabNet staff is
aware of this threat and will be working to protect the backbone routers from attack.
Anyone else using or planning to use routers in their local area networks should contact
the LabNet staff to discuss threats and possible protection measures. There will also be
attacks against domain servers. These attacks will be similar to the ones against routers
and workstations.

14

Appendix A: Hacker Attack Meeting Schedule

Hacker Attack meetings:

Meeting 1 - April 8:

-- Agree on the problem we are solving
-- Brainstorm possible solutions

- inc. what problem(s) does each solution address

Meeting 2 - April 15:

-- Delineate positives and negatives on each possible solution
-- Determine issues and questions about each solution that need further research

- someone takes the action to research each questions and problem

Meeting 3 - April 22:

-- Debate the merits and drawbacks for each possible solution
-- Draft a list of preferred solutions

Meeting 4 - April 29:

-- Develop final recommendations

15

Appendix B: Ways to attack a Macintosh computer from the Internet

For the vast majority of Mac users at LLNL, there is only one way that their Mac can be
directly attacked from the Internet - they have to be running the NCSA Telnet (client)
application and they have to enable the ftp server function. If a user does this and does
not protect the ftp server function by requiring a remote guest to have a user name and
password to access the server, then anyone who accesses the user's Mac via ftp has access
to all the user's files. The solution is to not enable ftp when running NCSA Telnet. With
version 2.5 of Telnet - don't select (put a check mark by) the ftp command in the file
menu. With version 2.6 - select the "ftp server" preference and set it to "off." If you are
unclear on turning off ftp in NCSA Telnet, read the documentation that is available at
NCSA or contact the LLNL Computer Security organization (x2-4655).

Be forewarned that the Macintosh implementation of many of the other Internet server
programs including ftp daemon, gopher, WAIS, and the World Wide Web are also
potentially subject to Internet attack. Do not place sensitive or mission essential data on a
Mac or any other computer which is acting as an Internet server of any kind.

16

Appendix C: Effectiveness of Security Mechanisms considered, pluses and minuses

Secure Access (one time passwords, Kerberos, s key, smart cards)
+ Reduces password vulnerability
+ Ready for automatic work flow
- Cost, admin., time to integrate in
- not available for all systems
- changes the way you do business (authenticate for every window)

Access Control
+ Denies service
+ Use TCP wrapper to Firewall off services such as denying access from a

 specific domains, etc.
- Unmanageable if done in routers

Firewalls
+ Forces all remote hosts to act the same way
+ Forces a single point of entry
- performance hit
- lack of flexibility (rules are same for everybody)
- people hide behind a Firewall (false sense of security)
- Admin. load
- Breaks services (requires proxy code)
- Requires committees to decide what comes through
- Only works for IP
- Hackers concentrate on them

Encryption - IP Level, Link Data level (public/private encryption (RSA) eventually
must do on net and on disk)

+ widely used
- requires a hierarchy (key management)
- can’t route if encrypted below the TCP level

System Administration (defensive administration)
a. software configuration (not world read/write and up-to-date patches
+ required
- hard to do
- have to keep current

b. current OS version
+ vendors support this version and not older ones
+ homogeneity is easier to administer
- not all applications run on latest version

c. enforce good passwords
- multi use passwords don’t help

d. audit software (system/user level)
+ helps you see that you’re under attack
+ gives you a record of how you were had
- state-of-the-art isn’t there yet
- uses a lot of disk space
- performance load

17

- need to look for exceptions against a base line

e. TCP wrappers, other tools - part of std CD-ROM
+ logs connections/rejects
+ exclude specific domains, machines
- TCP/IP based only
- requires systems administrator effort
- can be Trojaned

f. Sysadmin training/tools
+ must do
+ esp. required for machines with sensitive data
- easy to say, hard to get support from management
- costs time & money

g. CD ROMs (writable) for distributing pre-configured system software
+ verifiable checksums for reference
- requires committees to choose what goes on the CD (per OS)
- have to support multiple OS

h. shadow password file
+ if you’ve got it - use it

Management:
recognizing importance of

1. personal responsibility
2. Sysadmin
3. CSSO/OCSSO

Network configuration and monitoring:
a. switched nets versus broadcast nets

b. scrambled net boxes 10 BASF -T hub

c. separate white, red, green nets
- can only do to primarily connected buildings
- swing machines
- 500 - 750 $K to connect primary buildings

d. monitoring
- legal issues, requirements
- need to focus on what you’re going to look for (e.g. tftp)
- look for promiscuous mode
- put a cron tab file on the OS distribution CD ROM

Users:
user education
+ key part of the total solution - a must do
+ maybe a requirement for sensitive data access

Other Ideas:

#1 Make all off-site connections come in through one place
+ makes sense
- hard to enforce

18

- no one organization controls all the access lines

#2 Limit root access
+ especially machines with sensitive data

#3 Should send letter to Ethernet vendors - no promiscuous as mode default

19

Appendix D: TCP Wrapper

TCP Wrapper Readme -
@(#) README 1.7 92/06/11 22:21:17

General description

With this package you can monitor incoming connections to the SYSTAT,
FINGER, FTP, TELNET, RLOGIN, RSH, EXEC, TFTP, TALK, and other IP
network services. Connections are reported through the syslog daemon.
Requirements are that network daemons are started by the inetd program
or something similar, and the availability of a syslog(3) library.

The programs are tiny front ends. By default, they just report the name
or address of the remote host and of the requested service, and then
invoke the real network daemon; no information is exchanged with the
remote client process.

Optional features are: access control that limits the number of hosts
that can connect to your network daemons, remote user name lookups with
the RFC 931 protocol, and protection against hosts that pretend to have
someone else's host name.

The programs can be installed without any changes to existing software
or to existing configuration files. Just move the vendor-provided
daemons to another directory and install the front ends into their
original places. Installation details are given below.

Early versions of the programs were tested with Ultrix >= 2.2, with
SunOS >= 3.4 and ISC 2.2. Later versions have been installed on a wide
variety of platforms such as SunOS 4.1.1, Ultrix 4.0 and 4.2, Apollo
SR10.3.5 and an unknown number of other ones. The software should run
without modification on top of most BSD-style TCP/IP implementations.

Restrictions

Some UDP (and RPC) daemons linger around for a while after they have
serviced a request, just in case another request comes in. In the
inetd configuration file these daemons are registered with the `wait'
option. Only the request that started such a daemon will be handled by
the front ends. This restriction does not apply to connection-oriented
(TCP) services.

Some ConvexOS versions come with a broken recvfrom(2) implementation.
This makes it impossible for the daemon front ends to look up the
remote host address (and hence, the name) in case of UDP connections.

Access control

When compiled with -DHOSTS_ACCESS, the front-end programs support a

20

simple form of access control that is based on pattern matching. The
access-control software provides hooks for the execution of shell
commands when a pattern fires; this feature may be useful to install
"booby traps" on specific network services. For details, see the
hosts_access(5) manual page, which is in `nroff -man' format.

Detection of hosts that pretend to have someone else's host name

Authentication based on host names, such as used by RLOGIN and RSH,
used to work quite reliably when all host name lookups were done from
a _local_ hosts file.

With _distributed_ name services, authentication schemes that rely on
host names can be subverted by playing games with the address->name and
name->address maps that are maintained by some far-away name servers.

The front-end programs verify the remote host name that is returned by
the DNS server responsible for the address->name mapping, by looking at
the name and address that are returned by the DNS server responsible
for the name->address mapping. If any discrepancies are found, the
front ends conclude that they are dealing with a host that pretends to
have someone else's host name.

If the sources are compiled with -DPARANOID, the front ends will drop
the connection in case of a host name/address mismatch. Otherwise, the
front ends pretend that the host name is unknown when logging the
connection and consulting the optional access control tables.

RFC 931 support

The protocol described in RFC 931 provides a means to get the remote
user name from the client host. The requirement is that the client
host runs an RFC 931-compliant daemon.

User name lookups are enabled if the source is compiled with -DRFC931.
There are some limitations, though: the number of hosts that run an RFC
931 daemon is still small; user name lookups do not work for datagram
(UDP) connections. More seriously, remote user name lookups can cause
noticeable delays with connections from PCs.

Hooks for extending the access control language

A skeleton is available for adding user-defined extensions to the
access control language. The options.c file implements examples that
selectively (1) make a daemon front end switch to another user or group
id, (2) perform remote user name lookups, and (3) run an alternate
server (for example, a bogus ftp daemon that mumbles some faked error
message before hanging up).

The language extension hook is not enabled by default because it
introduces a minor change to the access control language syntax.

21

Related software

Versions of rshd and rlogind, hacked to report the remote user name in
addition to the remote host name, are available for anonymous ftp
(ftp.win.tue.nl:/pub/security/logdaemon.tar.Z). These programs are
derived from source code on the first 43BSD network source tape; they
have been tested only with SunOS >= 4.0 (the rshd appears to work with
Ultrix 4.x, too).

The securelib shared library by William LeFebvre can be used to control
access to network daemons that are not run under control of the inetd,
such as the RPC daemons that are registered with the portmap daemon.
Available as eecs.nwu.edu:/pub/securelib.tar.

An alternative portmap daemon can also help to improve RPC security.
ftp.win.tue.nl:/pub/security/portmap.shar.Z was tested with SunOS
4.1.1, Ultrix 3.0 and Ultrix 4.x. The protection is less effective than
that of the securelib library because portmap's primary task is to
maintain the RPC daemon lookup table. SunOS 4.x users should install
the latest revision of the portmap and NIS software.

Another way to manage access to TCP/IP services is illustrated by the
servers provided with the authutil package (comp.sources.unix volume
22) by Dan Bernstein. This one relies on RFC 931.

Source for a reasonably fast and portable RFC 931 daemon by Peter
Eriksson is available from ftp.lysator.liu.se:/pub/net/pauthd*.tar.Z.

Some TCP/IP implementations come without syslog library. A replacement
can be found in ftp.win.tue.nl:/pub/security/surrogate-syslog.tar.Z.

Configuration and installation (the easy way)

An advanced installation recipe is given later on. The "easy" recipe
requires no changes to existing software or configuration files.

If you don't run Ultrix, you don't need the miscd front-end program.
The miscd daemon implements among others the SYSTAT service, which
produces the same output as the WHO command.

By default, the front-end programs assume that the vendor-provided
daemons will be moved to the "/usr/etc/..." directory. If you want
something else, adjust the REAL_DAEMON_DIR macro in the file tcpd.c
(and the REAL_DAEMON macro in miscd.c).

Follow the instructions at the beginning of the Makefile and compile
the programs. The result is two binaries (three in case of Ultrix). The
`try' program can be used to play with host access control tables and
is described in a later section.

The tcpd program can be used for monitoring requests for the telnet,

22

finger, ftp, exec, rsh, rlogin, tftp, talk, spray, rusers, comsat and
other services that have a one-to-one mapping onto executable files.

Decide which services you want to be monitored. Move the corresponding
vendor-provided daemon programs to the location specified by the
REAL_DAEMON_DIR macro in the file tcpd.c, and copy the tcpd front end
to the locations where the vendor-provided daemons used to be. That is,
one copy of (or link to) the tcpd program for each service that you
want to monitor.

Ultrix only: If you want to monitor and/or restrict access to the
SYSTAT service, move the vendor-provided miscd daemon to the location
specified by the REAL_DAEMON macro in the miscd.c file, and install the
miscd front end into the original miscd location.

Configuration and installation (the advanced way)

Instead of moving the vendor-provided daemons to another directory,
define the REAL_DAEMON_DIR macro in the file tcpd.c (and, if you run
Ultrix, REAL_DAEMON in miscd.c) to reflect the present location of
those daemons. Then follow the instructions in the Makefile and do
a "make".

The tcpd program can be used for monitoring requests for the telnet,
finger, ftp, exec, rsh, rlogin, tftp, talk, spray, rusers, comsat and
other services that have a one-to-one mapping onto executable files.

Install the tcpd command in a suitable place. Apollo UNIX users will
want to install it under a different name because tcpd is the name of
an already existing command. A suitable name for the front-end program
would be "frontd". Then perform the following edits on the inetd
configuration file (usually /etc/inetd.conf):

 finger stream tcp nowait nobody /usr/etc/in.fingerd in.fingerd

becomes:

 finger stream tcp nowait nobody /usr/etc/tcpd in.fingerd

The example applies to SunOS 4.x; other UNIX implementations should not
differ much. Similar changes will be needed for other services that are
to be covered by the tcpd (or frontd) front-end program. Send a SIGHUP
to the inetd process to make the changes effective.

The miscd daemon that comes with Ultrix implements several network
services. It decides what to do by looking at its process name. One of
the services is systat, which is a kind of limited finger service. If
you want to monitor the systat service, install the miscd front end in
a suitable place and update the inetd configuration file:

 systat stream tcp nowait /front/ends/miscd systatd

That's right, Ultrix still runs its daemons with root privileges.

23

Daemons with arbitrary path names

The above tcpd examples work fine with network daemons that live in a
common directory, but sometimes that is not possible. You can cope with
these cases by specifying, in the inetd configuration file, an absolute
path name for the daemon process name. For example,

 ntalk dgram udp wait root /usr/etc/tcpd /usr/local/lib/ntalkd

Tcpd ignores the REAL_DAEMON_DIR macro when the daemon process name is
an absolute pathname; logging and access control will be based on the
last component of the daemon process name.

Testing the access control files

The "try" command, provided with this package, can be used to test out
the access control files. The command syntax is:

 ./try process_name hostname (e.g. ./try in.tftpd localhost)

 ./try process_name address (e.g. ./try in.tftpd 127.0.0.1)

In the first case, the program will use both the host name and
address. In the second case, the program will pretend that the host
name is unknown, so that you can simulate what happens when hostname
lookup fails. If there are any serious errors they will be reported
via the syslog daemon. Run a "tail -f" on the logfile while playing
with the "try" command.

Other applications

The access control routines can easily be integrated with other
programs. The hosts_access.3 manual page (`nroff -man' format)
describes the external interface of the libwrap.a library.

The tcpd front end can even be used to control access to the smtp port.
In that case, sendmail should not be run as a stand-alone daemon, but
it should be registered in the inetd.conf file. For example:

 smtp stream tcp nowait root /usr/etc/tcpd /usr/lib/sendmail -bs

You will periodically want to run sendmail to process queued-up
messages. A crontab entry like:

 0,15,30,45 * * * * /usr/lib/sendmail -q

should take care of that.

Acknowledgments

24

Thanks to Brendan Kehoe (brendan@cs.widener.edu), Heimir Sverrisson
(heimir@hafro.is) and Dan Bernstein (brnstnd@kramden.acf.nyu.edu) for
feedback on an early release of this product. The host name/address
check was suggested by John Kimball (jkimball@src.honeywell.com).
Apollo's UNIX environment has some peculiar quirks: Willem-Jan Withagen
(wjw@eb.ele.tue.nl), Pieter Schoenmakers (tiggr@es.ele.tue.nl) and
Charles S. Fuller (fuller@wccs.psc.edu) provided assistance. Hal R.
Brand (BRAND@addvax.llnl.gov) told me how to get the remote IP address
in case of datagram-oriented services, and suggested the optional shell
command feature. Shabbir Safdar (shabby@mentor.cc.purdue.edu) provided
a first version of a much-needed manual page. Granville Boman Goza, IV
(gbg@sei.cmu.edu) suggested to use the remote IP address even when the
host name is available. Casper H.S. Dik (casper@fwi.uva.nl) provided
additional insight into DNS spoofing techniques. The bogus daemon
feature was inspired by code from Andrew Macpherson (BNR Europe LTD).
I appreciate the code fragments that I received from Howard Chu
(hyc@hanauma.jpl.nasa.gov), John P. Rouillard (rouilj@cs.umb.edu) and
others. These saved me a lot of work.

Wietse Venema (wietse@wzv.win.tue.nl),
Department of Mathematics and Computing Science,
Eindhoven University of Technology,
The Netherlands.

TCP Wrapper Blurb -
@(#) BLURB 1.5 92/06/11 22:21:40

This package provides a couple of tiny programs that monitor incoming
requests for IP services such as TFTP, EXEC, FTP, RSH, TELNET, RLOGIN,
FINGER, SYSTAT, and many others.

Optional features are: access control based on pattern matching; remote
username lookup using the RFC 931 protocol; protection against rsh and
rlogin attacks from hosts that pretend to have someone else's name.

The programs can be installed without requiring any changes to existing
software or configuration files. By default, they just log the remote
host name and then invoke the real network daemon. No information is
exchanged with the remote client process.

Enhancements over the previous release are:

 1 - network daemons no longer have to live within a common directory
 2 - the access control code now uses both the host address and name
 3 - an access control pattern that supports netmasks
 4 - additional protection against forged host names
 5 - a pattern that matches hosts whose name or address lookup fails
 6 - an operator that prevents hosts or services from being matched
 7 - optional remote username lookup with the RFC 931 protocol
 8 - an optional umask to prevent the creation of world-writable files
 9 - hooks for access control language extensions
 10 - last but not least, thoroughly revised documentation.

25

Except for the change described under (2) the present version should be
backwards compatible with earlier ones.

Wietse Venema (wietse@wzv.win.tue.nl),
Department of Mathematics and Computing Science,
Eindhoven University of Technology,
The Netherlands.

26

Appendix E: S/Key pluses and minuses and "Smart Card" pluses and minuses

Both "Smart Card" and S/Key:
+ Far more secure than reuseable passwords
+ Gain a lot of protection for a minimal investment
+ Requires a PIN so are more secure than systems which just use a time synch

- Change the way you work
- Root can su to a user's account if the user has a one time password

- The one time password is new and is changing quickly

"Smart Card":
+ Software works with almost any brand of smart card
+ Available on all major UNIX platforms
+ Vendor supported
+ Software only (smart card not required) version available soon
+ Can operate in either synch or asynch mode (time synchronized or

 challenge/response)
+ Works on routers

- Until software only version is available, must carry a smart card
- Card cost $40 - $50 per user (in large quantities)
- Software cost roughly $180k for an LLNL site license for UNIX platforms,

VMS
would be additional cost

S/Key
+ Software is freely available
+ Runs on all Major UNIX platforms
+ Smart cards not required
+ Don't have to worry about time synch'ing - works on challenge/response
+ Can limit when, how many times, and during what time period a user can login
+ Can modify ftp, rsh, etc to require one-time password

- Not vendor supported
- Many different versions available on the Internet (original at AT&T)
- If you do not have a local computer capability, you have to pre-print out a list of
usable passwords
- If you loose your list, it is hard/impossible to login until you get a new list or
gain access to a local computing capability (like a PowerBook)

27

Appendix F: Description of The S/KEY One-Time Password System -

 Neil M. Haller nmh@thumper.bellcore.com
 Philip R. Karn karn@chicago.qualcomm.com

ABSTRACT

The S/KEY one-time password system provides authentication over networks
that are subject to eavesdropping/reply attacks. This system has several
advantages compared with other one-time or multi-use authentication
systems. The user's secret password never crosses the network during
login, or when executing other commands requiring authentication such as
the UNIX passwd or su commands. No secret information is stored anywhere,
including the host being protected, and the underlying algorithm may be
(and it fact, is) public knowledge. The remote end of this system can run
on any locally available computer. The host end could be integrated into
any application requiring authentication.

Trademarks

 Athena and Kerberos of trademarks of MIT.
 S/KEY is a trademark of Bellcore.
 SPX and DEC are trademarks of Digital Equipment Company.
 UNIX is a registered trademark of UNIX System Laboratories, Inc.

Attributes of the S/KEY One-Time Password System
--

The S/KEY authentication system is a simple scheme that protects user
passwords against passive attacks. It is not as powerful or general in
scope as Kerberos or SDASS; nor does it protect against active attacks.
It can, however, be easily and quickly added to almost any UNIX system
without requiring any additional hardware and without requiring the
system to store information (such as plain text passwords) that would
be more sensitive than the encrypted passwords already stored. The
S/KEY system can be used with non programmable terminals or personal
computers (e.g., systems running DOS or Apple Macintoshes) with
conventional communications programs.

Some of the properties of the S/KEY system are:

 o Eavesdropping protection

 o Conceptually simple and easy to use

 o Based on a memorized secret password; does not require a
special device although it can easily be adapted to do so.

 o Can be automated for authentication from a trusted system.

28

(Can also be partially automated for fast operation.)

 o No secret algorithms.

 o No secrets stored on host.

Description of the S/KEY One-Time Password System

There are two sides to the operation of our one-time password system.
On the user (or client) side, the appropriate one-time password must
be generated. On the system (server) side, the one-time password must
be verified. One time passwords are generated and verified using a
one-way function based on MD4 [Rivest]. (Conversion to MD5 would be
trivial)

We have defined our one-way function to take 8 bytes of input and to
produce 8 bytes of output. This is done by running the 8 bytes of
input through MD4 and then "folding" pairs of bytes in the 16-byte MD4
output down to 8 bytes with exclusive-OR operations. This allows us to
apply the one-way function an arbitrary number of times.

Generation of One-Time Passwords

The sequence of one-time passwords is produced by applying the one-way
function multiple times. That is, the first one-way password is
produced by running the user's secret password (s) through the one-way
function some specified number of times, (n). Assuming n=4,

p(1) = f(f(f(f(s))))

The next one-way password is generated by running the user's password
through the one-way function only n-1 times.

p(2) = f(f(f(s)))

An eavesdropper who has monitored the use of the one-time password
p(i) will not be able to generate the next one in the sequence p(i+1)
because doing so would require inverting the one-way function. Without
knowing the secret key that was the starting point of the function
iterations, this can not be done.

Seeding the Password

A user might want to use the same secret password on several machines,
or might allow the iteration count to go to zero. An initial step
concatenates a seed with the arbitrary length secret password, crunches
the result with MD4, and folds the result to 64 bits. The result of
this process is then iterated n times.

29

System Verification of Passwords

The host computer first saves a copy of the one-time password it
receives, then it applies the one-way function to it. If the result
does not match the copy stored in the system's password file, then the
request fails. If they match, then the user's entry in the system
password file is updated with the copy of the one-time password that
was saved before the final execution (by the server) of the one-way
function. This updating advances the password sequence.

Because the number of one-way function iterations executed by the user
decreases by one each time, at some point the user must reinitialize the
system or be unable to log in again. This is done by executing a
special version of the passwd command to start a new sequence of
one-time passwords. This operation is essentially identical to a
normal authentication, except that the one-time password receive
over the network is not checked against the entry already in the
password file before it replaces it. In this way, the selection of a
new password can be done safely even in the presence of an eavesdropper.

Operation of S/KEY One-Time Password System

Overview

The S/KEY one-time password authentication system uses computation to
generate a finite sequence of single-use passwords from a single secret.
The security is entirely based on a single secret that is known only to
the user. Alternatively, part of or the entire secret can be stored in a
non-retrievable way, in the computing device.

Generation of S/KEY One-Time Passwords

As mentioned above, the one-time password sequence is derived from the
secret password using a computer. The required computation has been
executed on a variety of PC and UNIX class machines including notebook
and palm-tops. A vendor has estimated that credit card size devices
could be built for less than $30 in large quantities.

The program can also be stored on and executed from a standard floppy
disk. This would allow operation on a remote computer that could not be
entirely trusted not to contain a Trojan Horse that would attempt
to capture the secret password. It is sometimes useful to pre-compute
and print several one-time passwords. These could be carried on a trip
where public terminals or workstations were available, but no trusted
local computation was available.

Description of Operation

The following narrative describes the procedure for logging into a UNIX
system using the S/KEY one-time password system. To illustrate the

30

most complex case, we assume a hand-held PC compatible computer is used.

 o The user, call her Sue, identifies herself to the system by login name.

 o The system issues a challenge including the sequence number of the
 one-time password expected and a "seed" that is unique to the system.
 This "seed" allows Sue to securely use a single secret for several
 machines. Here the seed is "unix3" and the sequence number is 54.

 o Sue enters 54 and unix3 into her palm-top computer. She is prompted
 for her secret password.

 o Sue enters her secret password that may be of any length. The palm-top
 computes the 54th one-time password and displays it.

 o Sue enters the one-time password and is authenticated.

 o Next time Sue wants access, she will be prompted for one-time
 password sequence number 53.

Semi-Automated Operation

The complexity illustrated above is necessary only when using a terminal
that is not programmable by the user, or when using a non-trusted
terminal. We have built semi-automatic interfaces for clients using
communications software on popular personal computers. The following
example illustrates logging in using a trusted personal computer and a
popular terminal emulation program.

 o Before starting the communication program, Sue runs the CTKEY
 program that ties a TSR to a "hot-key" such as F10.

 o Sue identifies herself by login name as above.

 o The system issues the same challenge including the seed "unix3"
 and the sequence number 54. The host system now expects an
 s/key one-time password.

 o Sue presses the hot-key and is then prompted for a secret password
 by the TSR program on the local system.

 o In response to Sue's secret password, the 54th one-time password
 is displayed at the position of the cursor.

 o Sue presses "Insert" and the terminal emulator transmits the
 one-time password completing the authentication.

If the personal computer were in a trusted location, an option of the
CTKEY program allows the secret password to be stored in a local file.

31

Form of Password

Internally the one-time password is a 64 bit number. Entering a 64 bit
number is not a pleasant task. The one-time password is therefore
converted to a sequence of six short words (1 to 4 letters). Each word
is chosen from a dictionary of 2048 words. The contents of this
dictionary is not a secret.

Source Screening

It is frequently desirable to allow internal access with a multi-use
password while requiring one-time passwords for external access.
A screening table provides this function. When this table is present,
login attempts that pass the screening test are permitted to use the
normal password or a one-time password. Others are notified that the
use of the one-time password is required.

Password echo

Normally systems disable printing during the typing of a password so
that an onlooker cannot steal the password. With a one-time password,
this is unnecessary. The replacement login command allows the user
to turn echo on by pressing "return" at the password prompt. This
makes it easier to enter the longer one-time password.

Acknowledgments

The idea behind our system was originally described by Leslie Lamport.
Some details of the design were contributed by John S. Walden who
wrote the initial version of the client software. This work was performed under the
auspices of the U.S. Dept. of Energy at LLNL under contract no. W-7405-Eng-48.

References

Eugene H. Spafford, "The Internet worm program: An analysis." Computer
Communications Review 19(1):17-57, January 1989.

D. C. Feldmeier and P. R. Karn, "UNIX Password Security - Ten Years
Later", Crypto '89 Conference , Santa Barbara, CA August 20-24, 1989.

J. G. Steiner, C. Neuman, and J. I. Schiller. "Kerberos: An
authentication service for open network systems." USENIX Conference
Proceedings, pp. 191-202, Dallas, Texas, February 1988.

Catherine R. Avril and Ronald L. Orcutt. Athena: MIT's Once and
Future Distributed Computing Project. Information
Technology Quarterly , Fall 1990, pp. 4-11.

32

R. L. Rivest, The MD4 Message Digest Algorithm, Crypto '90 Abstracts
(August 1990), 281-291.

Leslie Lamport, "Password Authentication with Insecure Communication",
 Communications of the ACM 24.11 (November 1981), 770-772.

T
echnical Inform

ation D
epartm

ent • Law
rence Liverm

ore N
ational Laboratory

U
niversity of C

alifornia • Liverm
ore, C

alifornia 94551

